
TWELVE WAYS TO FOOL THE MASSES WHEN DESCRIBING MESH

GENERATION PERFORMANCE

Timothy J. Tautges1

David R. White2

Robert W. Leland3

§Sandia National Laboratories, Albuquerque, NM,

University of Wisconsin-Madison, Madison, WI
1tjtautg@sandia.gov

2drwhite@sandia.gov
3leland@sandia.gov

ABSTRACT

Mesh generation for finite element analysis is far from a solved problem. Although several automatic meshing algorithms exist,

other difficulties of setting up a problem for finite element analysis still make this an interactive process. Undaunted, we

continue to perform research on, and therefore publish, papers describing their work to overcome these problems. In our efforts

to describe our work “in the best possible light”, we often obscure the real technical issues in these publications, rather than

honestly assessing both the pros and cons of the described approach. This is an especially fruitful endeavor when reporting on

mesh generation, given the 3D nature of the problem and the natural tendency of layman to avoid understanding the details of this

problem. This paper describes twelve tried-and-true methods for obscuring rather than elucidating the performance of mesh

generation technology.

Keywords: mesh generation, hexahedral, quadrilateral, geometry decomposition

§ SANDIA IS A MULTIPROGRAM LABORATORY OPERATED BY SANDIA CORPORATION, A LOCKHEED MARTIN
COMPANY, FOR THE UNITED STATES DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC04-94AL85000.

1 INTRODUCTION

Mesh generation for finite element analysis is far from a

solved problem. Even when fully automatic algorithms exist,

as in tetrahedral meshing, the other parts of the process are

sufficiently difficult that a great deal of user interaction is

still necessary. Undaunted, we continue to work on, and

therefore publish, new approaches to the mesh generation

problem. In our efforts to describe our meshing technology

“in the best possible light” compared to other approaches, we

often make an algorithm look better than it really is. Given

the 3D nature of the meshing problem, it can be difficult to

tell whether a method will really be as effective as is implied

in a publication. Since users tend to avoid understanding the

details of the underlying methods, they often can’t tell from

the publication either.

This illustrates some techniques used to describe, or not

describe, mesh generation performance. While its primary

purpose is to focus attention on the ways in which

performance can be overstated, it also gives tips for fully

describing both benefits and shortcomings of meshing

algorithms. I hope that this will improve the information

exchange in the meshing community, and move us toward

better solutions more quickly.

2 TWELVE WAYS

Twelve items are listed below which often serve to obscure

the real performance of meshing algorithms or techniques.

An attempt is made to describe both ways in which each item

is used to obscure performance, and then ways in which the

item can be used to further the understanding of the given

technology. Some of these methods apply only to specific

types of mesh generation, e.g. all-hexahedral meshing, while

others are more generic. The more generic and widely

applicable items are listed first.

2.1 Generate a large mesh where a small

one will do

There are few things more effective at distracting from the

real technical issues behind a meshing method than

generating a really, really big mesh. Small details in the

geometric model should be removed so they don’t make

generating this mesh too difficult. If questions arise about

which analysis application the mesh is being prepared for, or

why fine geometric details are not resolved by such a fine

mesh, make a vague reference to Moore’s Law and answer

condescendingly that applications always need larger and

larger models. This technique is especially helpful for

reporting on parallel mesh generation, since it distracts from

issues like parallel performance, parallel IO, and parallel

partitioning.

Parallel computing applied to analysis codes does introduce a

need for ever-larger meshes. Beyond a certain point, though,

the reduction in discretization error due to finer mesh

resolution is wasted because of the lack of fidelity to the

original geometric model.

2.2 Simplify meshing at the cost of analysis

There are two ways to reduce the relative time to mesh

compared to the overall analysis time: reduce the actual

meshing time, or increase the overall analysis time. Since

people pay attention to interactive meshing time, and because

computers are always getting faster anyway (see previous

item), one need only concentrate on minimizing the actual

meshing time. Even if this comes at the cost of increased

overall time to analysis, at least it’s no longer meshing’s

fault.

There are several examples for which this approach has been

particularly effective. One example is so-called “THEX”

meshes, where all-hexahedral meshes are generated by

splitting tetrahedra into hexahedra using mid-point

subdivision. Although it may be necessary to generate your

own analysis results (because few analysts choose in practice

to use meshes like these), this is balanced by being able to

show pictures of very complicated all-hexahedral meshes

generated with this technique. Inside-out hexahedral

meshing schemes have also used this approach effectively.

For these methods, fine Cartesian mesh is used on the interior

and the exterior is fitted to the boundary, or resolves the

boundary in a stair-step fashion. Of course, the finer the

Cartesian mesh, the better the resolution of the boundary (and

the more impressive the pictures). Those concerned about

analysis time for these problems should reread item 1.

Probably the most effective application of this item is the use

of quadratic tetrahedral meshes. Attention has been focused

almost exclusively on time to mesh, eliminating any

questions about the analysis time of these meshes compared

to that of hexahedral meshes with similar analysis accuracy.

This argument has also benefited from the widespread belief

that automatic all-hexahedral meshing is impossible, while

all-tetrahedral meshing has been a solved problem since the

1980’s.

2.3 Quote time to mesh without accounting

for related work

When comparing meshing approaches, it is best to compare

the weaknesses of other approaches with the strengths of

yours. Since the focus is on reducing the time to mesh

measured using the other approach, one need only compare

times for tasks included in the other approach. For example,

using STL files as input to your mesh generator eliminates

the problem of CAD translation; since the original approach

has no issue with assigning boundary conditions, one need

not include that time in the comparison. Another good

example is the use of overset grids, where clearly it is easier

to resolve specific details of the geometry. The interactive

effort to choose overset regions and insert them into the

background mesh should be de-emphasized; users of other

approaches will be unfamiliar with this process anyway, so

they probably won’t notice. This strategy has also been

effective at describing multi block-structured meshing,

grafting, and mesh cutting.

2.4 Use examples which appear more

complicated than they are

Because quantifying the effort required to hex-mesh a given

model a-priori is extremely difficult[4], we rely on qualitative

visual assessment of meshing complexity, both before and

after the generation of a mesh. It has been said that a picture

is worth a thousand words; however, people forget to say that

pictures are worth plus or minus 1000 words. That is, a well-

chosen picture can eliminate discussion which would

otherwise occur about the details of a given meshing

approach. To this end, a part should be made to appear more

complicated than it really is. Two proven methods to

accomplish this are the addition of extraneous features which

are actually handled automatically, and showing models

meshed with decompositions which are not highlighted. For

example, in Figure 1, drawing the model with all regions the

same color (left) makes the model appear more complicated

than when meshed regions are highlighted separately (right).

Another favorite technique is to describe an algorithm using

the most complex models handled successfully by the

algorithm, implying that they represent typical performance.

Since there are no standard test suites for meshing difficulty,

there are no options for benchmarking performance anyway.

2.5 Obscure important details about the

model

Simplifying assumptions are often necessary to complete

difficult meshing problems. However, because users tend to

prefer not to know the details about a given meshing

approach, one need not volunteer all the nitty gritty details

when offering new meshing approaches as solutions. Some

common details that are sometimes mentioned which should

not be include:

Non-conforming interfaces: Although many analysis codes

and users would like to have mesh which is compatible

across adjoining regions, achieving this compatibility often

makes mesh generation much more difficult. Furthermore, it

is difficult to notice incompatibility in 3D views of meshes

anyway. Of course, if any questions arise about this issue,

one could think of it as an analysis code’s problem anyway.

Figure 1: Model shown with all regions the
same color (left) or not (right).

Non-boundary-fitted mesh: Some of the greatest difficulties

in meshing are caused by fine details on part boundaries.

Generating meshes for these parts is greatly simplified if

these details are not resolved. Since by definition these

details are difficult to see, it will be hard to notice their

absence in published pictures of meshes resulting from this

approach. If analysts complain about not being able to

resolve small details on the boundary, one can always offer to

use h-refinement to improve the resolution locally. Whether

the targeted analysis code supports h-refined meshes or not is

an analysis issue, and is therefore not relevant to a discussion

about mesh generation.

2.6 Describe 2D algorithm assuming easy

extension to 3D

Working in two dimensions is always easier than working in

three dimensions, and is also far simpler to describe to others.

If working on surface-based meshing, it is also useful to

assume that a surface parameterization will always be

available, obviating the need to ever consider the 3D aspects

of a problem. Since referencing other work is an important

part of research publications, it can also be helpful to

reference numerical analysis work, where the dimension

often appears as a parameter in equation formulations.

Working in two dimensions also makes implementation far

easier, since there is no need for handling complicated

geometry. If one can get by with planar surfaces always

bounded by linear or quadratic curves, all the better. Of

course, when using this approach, one should always mention

plans to extend the work to 3D, and where possible even

show pictures of 3D models for which the technique should

work.

2.7 Describe “automatic” algorithm which

uses arbitrary tunable parameters

The use of tunable parameters is a common technique used

across computational simulation. It is amazing the level of

agreement one can get with experiment by adjusting a few

parameters[8]. When applied to physical models, e.g.

material properties, it is sometimes easy to tell when

parameter values do not reflect reality. Parameters used in

meshing algorithms often have no physical interpretation, or

an interpretation which requires knowledge which most

readers have no desire to obtain. Also, since there are no

standard test suites for mesh generation, one need not worry

about benchmarking with a common set of parameters. To be

most effective, users of this technique should make an effort

to use parameters which look like they have a physical

interpretation, but one for which it is difficult to tell whether

a particular value is plausible or not. As with item #4, it

helps to find models as complicated as possible to

demonstrate algorithms which use this technique.

2.8 Quote time to mesh, leaving out

important details

For lack of an a-priori quantitative measure of difficulty,

time-to-mesh is often used when assessing mesh generation

capability. However, even such a simple metric as time can

be used to obscure real results. For example, there is no

better way to decrease the time to mesh a difficult problem

than by assigning your best person to the job, while implying

that they represent “average” performance. Another effective

technique is to report results for problems which are

remarkably similar to ones solved in the past. However, by

far the most ingenious technique we have observed is to

quote the time to mesh an important model in days, failing to

mention that deadlines forced those doing the meshing to

work twelve hours per day. For really difficult models, one

can use months, without mentioning all the Saturdays and

Sundays spent in the office.

2.9 Mesh single-region models

Most meshing approaches are developed using single-part

examples, since working with assemblies is, in general, more

difficult. The added details introduced by assemblies are

difficult to show in publications anyway, given the inherent

3D nature of these problems, and therefore aren’t worth the

effort. One could even argue that assembly models differ

only in coupling on the boundary, and therefore are more a

boundary condition (and therefore an analysis problem)

anyway. Instead of using assembly models to demonstrate

the superiority of a given algorithm, it is far easier to add

extraneous details to make the results look better (see Item

#4). Note that one should not make reference to item #1

when using this technique, since that may imply that added

computational power would otherwise enable analysis of

assembly models.

2.10 Use an approach which works by itself

but breaks other parts of the process

As discussed in item #2, people focus mostly on time to

mesh, without regard to how a given technique affects other

parts of the analysis process. Therefore, we should not feel

constrained only to methods which fit into current analysis

practice. In some cases, novel approaches are far easier to

make work, can be made to appear to solve the problem, even

though they are not supported by current analysis codes. The

best example of this in practice is the generation of hex-

dominant meshes (with the remainder of the mesh composed

of pyramids and tetrahedra). Because of the robustness of

tetrahedral meshing in general, it is relatively easy to “close”

such meshes. We have observed that including tables

reporting the relative number of each element gives the

impression that these data are important, and does not

indicate very clearly the relative volume of the part filled by

each element (which might not look so favorable). When

available, pictures showing analysis results on these meshes

are quire useful; unfortunately, since these meshes are not

generally supported by analysis codes, these pictures may not

be available. In their stead, showing shaded pictures of

“shrunken” elements, with each element type shown in a

different color, can be impressive.

Other meshing techniques which can use this approach

include Chimera/overset grids and non-conforming h-adapted

meshes. In these cases, it is often easier to find analysis

codes to compute on these meshes, since those codes are

often developed by the same groups promoting those

meshing approaches. In fact, this may be a good lesson for

those developing mixed-element meshing techniques.

2.11 Report a single quality metric (or none),

where several should be used

Some researchers have complained about there being too

many different metrics for reporting mesh quality. However,

I say if life hands you lemons, you should make lemonade;

the more quality metrics one has to choose from, the easier it

is to find one which reports favorable results for your meshes.

Also, in this situation, it is easy to justify the addition of yet

another metric, which can be designed with that goal in mind.

Because of the diverse background of researchers in this

field, it is also sometimes helpful to describe the new quality

metric using lots of complicated mathematical equations;

most mesh generation researchers don’t or won’t take the

time to understand these formulations anyway.

A related issue is how to show mesh quality. One useful

technique is to use shaded images of the mesh, with the color

determined by quality metric. This is useful for two reasons:

first, it is likely the smaller elements which will have poor

quality, but these will also be difficult to see because of their

size; and second, when working with 3D models, poor-

quality elements often occur on the interior anyway, or at

least can be hidden by judicious choice of viewing angle for

the picture.

2.12 Show surface mesh but not interior

Everybody knows that a surface mesh is likely to have better

quality than the interior (see item #6). It is also extremely

difficult to assess interior mesh quality visually. Therefore,

pictures of 3D models should always be shown in shaded

mode, preferably from a camera position that shows the most

complicated model having the best-quality mesh. In certain

cases, it can also be helpful to show carefully-chosen interior

features of the 3D mesh, for example of vehicle occupants in

automotive interior CFD analysis.

3 BUT SEROUSLY…

If you’ve gotten to this point in the paper, you may realize

that the last section was written facetiously; that is, I’m not

really recommending you use the practices described there.

However, in our zeal to promote the latest and greatest

meshing technology, we sometimes fail to clearly state the

limitations in as complete detail as the capabilities of our

work. In other cases, it may be very application-dependent

which approach will work better, or other issues arise which

make it less clear whether there is a “right” answer. At any

rate, the following sections discuss some of the issues which

arise for each of the items.

3.1 Generate a large mesh where a small

one will do

Parallel computing applied to analysis codes only increases

the demand for ever-larger meshes. Beyond a certain point,

though, the reduction in discretization error due to finer mesh

resolution is wasted because of the lack of fidelity to the

original geometric model. There are very few cases I have

observed where very large, unstructured meshes have been

constructed for solid geometry-based domains. Examples

where large discretized models are used for simple geometric

domains include Direct Numerical Simulation for CFD and

whole-earth models for weather modeling. In these cases,

though, the geometric domain is trivial and not represented in

a CAD system.

Removal of detail from a geometric model is necessary

before a coarse mesh (i.e. a mesh with characteristic size

much greater than the smallest model feature) can be

generated with most meshing systems. However, as the mesh

resolution increases, the geometric detail should also be re-

introduced, since its resolution will be possible with the finer

mesh. Obviously, this may be problematic without automatic

meshing algorithms, e.g. for hexahedral meshes. However,

even for tetrahedral meshes, it may be argued that this

approach may perform better than post-meshing detail

removal, as in this case it would not be necessary to always

resolve the smallest details in the original model. Indeed,

some proponents of post-meshing detail removal are starting

to deliver a-priori detail removal capabilities as well [13]. I

speculate that such “lazy detail resolution” will become more

important as adaptive mesh refinement becomes more

commonplace in large FEA applications.

3.2 Simplify meshing at the cost of analysis

There have been times when both THEX-type meshes and

stair-step meshes have been demonstrated as a viable

alternative to all-hexahedral meshes, when they actually were

not viable. On the other hand, I know of no theoretical or

empirical published results showing whether or why THEX

meshes perform poorly. Indeed, there is at least one case

where these meshes have been used as part of an award-

winning analysis effort on Teraflop-class computers [14].

We often become so polarized on a given issue that we fail to

even consider the possible domains of applicability in a

rigorous fashion.

There is no better example of this issue than the still-

unresolved hex versus tet debate. There has been some work

on the theoretical aspects of this problem [16], and some

indication that analysts are beginning to consider using

tetrahedral meshes where in the past this may not have been

considered for cultural reasons. However, this issue is far

from resolved, and will require both theoretical and empirical

work to answer remaining questions.

3.3 Quote time to mesh without accounting

for related work

Continued delivery of vertically-integrated commercial CAE

applications has helped raise the level of awareness on the

issue of overall time to analysis, and progress is being made

to address this issue in the national lab context as well. Also,

there have been good examples of constrained design-

analysis systems which are very effective within their

application domain [15]. Therefore, progress is being made

at addressing the overall time to solution as well as making

use of special-purpose algorithms to solve niche (but

important) applications.

3.4 Use examples which appear more

complicated than they are

This issue will never go away entirely, and one could argue

that there is merit in showing the upper bound of capability

when reporting on a given meshing algorithm or technique.

Another way to address this issue is by developing suites of

test problems on which algorithms can be compared. One

such effort is described later in this paper.

A corollary to this issue is models which are much more

difficult to mesh than they appear. One such model is shown

in Figure 2; part of the difficulty with this model is the

proximity of surface boundaries when surfaces through the

sweep are projected to a common plane. Other examples

include models with large features in close proximity to each

other (which show small characteristic size in the absence of

features anywhere near that size) and models with details

(often translation artifacts) too small to see visually.

3.5 Obscure important details about the

model

Modeling non-conforming interfaces has received attention

relatively recently, and is sometimes done in practice using

“tied contact” surfaces. Unfortunately, results have not been

encouraging, and the tied contact technique is not often used

in practice. One bright spot in the area of non-conforming

interfaces is the use of embedded boundary techniques in

CFD analysis [20]; in certain cases, it may be worth

exploring these techniques for application to FEA.

3.6 Describe 2D algorithm assuming easy

extension to 3D

Working in two dimensions can be an important part of

developing robust 3D meshing algorithms. However, the

literature is full of cases where 3D turns out to be far more

difficult than the analogous 2D algorithm. For example, pure

Delaunay-based triangulation has provable quality bounds in

two dimensions which do not apply in three dimensions;

provable-quality tetrahedral meshing which also works in

practice has only recently been found [13]. Likewise, there

are many algorithms which work rather well in the plane (i.e.

two topological dimensions) but which perform poorly in 3D

space. Examples include intersection detection in advancing-

front surface meshing [6], and winding number-based inside-

outside checks[7].

A more current example of the difficulty of extending

algorithms to three dimensions is the lack of a robust 3D all-

hexahedral meshing algorithm, almost fifteen years after a

robust all-quadrilateral algorithm was reported [17]. In

particular, direct extension of the algorithm to three

dimensions was quite unsuccessful [18]. In this case, it is the

complexity added by the third topological dimension which

makes the problem much more difficult.

In all these cases, adding a third dimension, either geometric

or topological, can render inapplicable the theoretical or

heuristic foundations of a 2D algorithm. In my experience,

extending to that third dimension is rarely trivial.

3.7 Describe “automatic” algorithm which

uses arbitrary tunable parameters

A key measure of success is whether an algorithm can

succeed the first time it is applied to a given model, with no

manual adjustment of parameters. While the use of

adjustable parameters gives much-needed degrees of freedom

for solving difficult problems, their use should be clearly

described when reporting those solutions. This is another

case where having a standard set of test cases for mesh

generation would be helpful.

Figure 2: Model that’s surprisingly difficult to
hex-mesh, due to parallel lines in projected

cross -sections.

3.8 Quote time to mesh, leaving out

important details

The proper conditions under which a benchmark is done will

vary with the purposes of the benchmark. If testing is being

done to see how fast an expert can use a given tool, then it

makes sense to perform the test using the most experienced

person with that tool. Great time savings can be obtained by

constraining model variations to a small range of design

parameters, and many good simulation tools have been

developed under these conditions. However, in all cases, the

conditions imposed by these tests should be clearly stated in

benchmark reports.

3.9 Mesh single-region models

Simulation models are being constructed with increasing

fidelity to the as-designed systems, which are often multi-part

models. Furthermore, current hexahedral meshing

approaches require decomposition to reduce general parts to

more primitive shapes. These models have the same

characteristics as multi-part models coming from design

systems. This is not likely to change even after a robust all-

hexahedral meshing algorithm is found, due to the inherent

structure in a hexahedral mesh and the desire to match that to

the structure of the domain.

Meshing multi-region models can be significantly more

difficult, because of the coupling introduced by mesh

matching on the interfaces. Although there are certain

analyses where single-region models are more common (e.g.

CFD, structural optimization of single parts), mesh

generation systems are evolving from niche products into

packages applicable to a wider range of physics. To be

effective across a spectrum of analysis types (structural,

thermal, etc.), a meshing algorithm should be able to handle

multi-region models, and regions with pre-determined surface

meshes.

3.10 Use an approach which works by itself

but breaks other parts of the process

If mesh generation was the end of the process, we would

have many more meshing algorithms to choose from,

including all-hexahedral algorithms. There are many

approaches to all-hexahedral meshing or hex-dominant

meshing which are sufficiently robust in the mesh generation

stage. The trouble is, the meshes they generate cannot be

used by downstream analyses, or the analysis codes must be

modified to handle these types of meshes.

There are many examples of meshes like this. Hex-dominant

mesh generation is one approach, where hex elements are

generated first in an advancing-front layer and tetrahedra

used to close the mesh. Although there are many meshing

tools able to generate meshes like this[9][10], relatively few

analysis codes can handle the resulting meshes, and therefore

they have had little impact.

Another example of this item is the use of tetrahedral meshes

in cases where the analyst would prefer to use hexahedra.

Although the mesh generation step is far easier with

tetrahedra, there are cases where the analysis takes more time

to obtain a given accuracy of results. Likewise, some

advocates of hexahedral meshing often assume the need for

hexahedra without ever seriously questioning why they are

desired. In both these cases, a well-informed statement about

why one element type was preferable over another might

raise the level of dialog on this important issue.

3.11 Report a single quality metric (or none),

where several should be used

There are almost as many mesh quality metrics as there are

methods for generating the meshes, and some well-known

metrics (e.g. positive scaled jacobian) which indicate

necessary but not sufficient quality. However, there are often

other factors which are necessary for a mesh to be of practical

use. For example, the shortest edge length in a mesh can

severely limit the time step in explicit codes due to CFL

conditions.

Because of this, there is no single metric for describing a

“good” mesh. Rather, the most useful rule is to clearly state

what the formulation of any quality metric used is (explicitly

or by reference), as well as describing the actual quality data.

Recent work has been done to unify quality metrics under a

common mathematical framework which can also account for

variations in the definition of an “ideal” element[11]. This

research has already had an impact in how mesh quality is

reported (the same author popularized the use of the scaled

jacobian metric), and I encourage its use.

3.12 Show surface mesh but not interior

Showing only surface mesh, sometimes for a very carefully-

chosen region of a model, can make a mesh look much better

than it is. A scientist once related to me his experience

evaluating a meshing tool in the following manner:

“The mesh looked fine on the surface, but when I

saw the interior I wanted to call 911”

The only way to overcome this problem is to pay attention to

quality metrics used to describe a mesh.

4 GOT MESH?

One recent effort to address some of the difficulties in

assessing various meshing approaches is the construction of a

web site for storing and accessing geometry and mesh

models. This web site, http://www.gotmesh.org, allows the

download and upload of geometry and mesh models in

various formats, along with numerical and graphical mesh

quality data. This web site allows the storage of mesh and

geometry models in various formats (ACIS .sat, IGES, etc.),

and the indication of relations between models, for example

between a model decomposed for hex meshing and the

original model it came from. I hope that this web site will

serve as a means of evaluating new meshing approaches, and

encourage others to upload new models there when possible.

5 SUMMARY

In every technical field, there is a tendency to over-state the

capabilities of the latest algorithms in the effort to cast that

work in the “best possible light”. Mesh generation is no

different, and indeed, there are characteristics of this field

which make it particularly susceptible to this practice. The

purpose of this paper is to highlight some of the methods

used (inadvertently or not) to obscure rather than elucidate

the true performance of various mesh generation techniques

on real applications, while also discussing some of the real

difficulties in many of these areas as applied to mesh

generation.

ACKNOWLEDGEMENTS

I would like to acknowledge the many researchers (including

myself) who have published material which provided

inspiration for this paper (as well as a bit of entertainment

over the years).

6 REFERENCES

[1] David H. Bailey, "Twelve Ways to Fool the Masses

When Giving Performance Results on Parallel

Computers", Supercomputing Review, Aug. 1991, pg.

54-55.

[2] J. Steger, F.C. Dougherty, J. Benek, “A Chimera grid

scheme”, Advances in Grid Generation, Ghia K.N. and

Ghia, U, (Eds), ASME FED, 1983, V 5, pp. 59-69.

[3] Jankovich, Steven R., Steven E. Benzley, Jason F.

Shepherd and Scott A. Mitchell, “"The Graft Tool: An

All-Hexahedral Transition Algorithm for Creating a

Multi-Directional Swept Volume Mesh", Proc. 8th

International Meshing Roundtable, SAND99-2288,

Sandia National Laboratories, Oct. 1999.

[4] D. White, S. Saigal, S. Owen, “Meshing Complexity of

Single Part CAD Models”, Proceedings, 12th

International Meshing Roundtable, Sandia National

Laboratories report SAND 2003-3030P, pp.121-134,

Sept. 2003.

[5] J. R. Shewchuk, “What Is a Good Linear Finite

Element? Interpolation, Conditioning, Anisotropy, and

Quality Measures”, unpublished preprint,

http://www.cs.berkeley.edu/~jrs/papers/elemj.ps, 2002.

[6] Roger J. Cass, Steven E. Benzley, Ray J. Meyers, Ted

D. Blacker, "Generalized 3D Paving: An Automated

Quadrilateral Surface Mesh Generation Algorithm”, Int.

J. Numer. Meth. Engrg., 39:1475-1489 (1996).

[7] J. O’Rourke, “Computational Geometry in C”,

Cambridge University Press, 1994.

[8] Timothy J. Tautges, "MELCOR 1.8.2 Assessment: The

DF-4 BWR Damaged Fuel Experiment", SAND93-

1377, Sandia National Laboratories, Albuquerque, NM,

October 1993.

[9] Steven J. Owen, Sunil Saigal, “H-Morph: an indirect

approach to advancing front hex meshing”, Int. J.

Numer. Meth. Engrg, 49:289-312 (2000).

[10] Robert W. Leland, Darryl J. Melander, Ray W. Meyers,

Scott A. Mitchell, Timothy J. Tautges,"The Geode

Algorithm: Combining Hex/Tet Plastering, Dicing and

Transition Elements for Automatic, All-Hex Mesh

Generation", Proceedings, 7th International Meshing

Roundtable, Sandia National Laboratories, pp.515-521,

October 1998

[11] Patrick M. Knupp, "Matrix Norms & the Condition

Number; A General Framework to Improve Mesh

Quality via Node-Movement", Proc. 8th International

Meshing Roundtable, SAND99-2288, Sandia National

Laboratories, Oct. 1999.

[12] C. R. Dohrmann, S. W. Key, M. W. Heinstein,

“Methods for connecting dissimilar three-dimensional

finite element meshes”, Int. J. Numer. Meth. Engrg,

47:1057-1080 (2000).

[13] “Simmetrix Releases Simulation Modeling Suite 5.2”,

press release, Simmetrix Inc, April 27, 2004,

http://www.tenlinks.com/NEWS/PR/simmetrix/042704_

simmodelv52.htm.

[14] Manoj Bhardwaj, Kendall Pierson, Garth Reese, _ Tim

Walsh, David Day, Ken Alvin and James Peery _

Charbel Farhat and Michel Lesoinne, “Salinas: A

Scalable Software for High-Performance Structural and

Solid Mechanics Simulations”, SC 2002, Baltimore,

MD, Nov. 16-22, 2002.

[15] Naveen Rastogi, Fatma Kocer and Rodolfo Palma, “A

Computer Aided Optimization Tool to Design

Electromagnetic Retarders”, SAE Technical Paper

Series 2004-01-0382, 2004 SAE World Congress,

Detroit, Michigan, March 8-11, 2004.

[16] J. R. Shewchuk, “Constrained Delaunay

Tetrahedralizations and Provably Good Boundary

Recovery”, Proceedings, 11th International Meshing

Roundtable, Sandia National Laboratories report

SAND2002-2777P, pp. 193-204, September 15-18

2002.

[17] Ted D. Blacker, Michael B. Stephenson, "Paving: A

New Approach To Automated Quadrilateral Mesh

Generation", Int. J. Numer. Meth. Engrg., 32:.811-847

(1991).

[18] Michael B. Stephenson, Scott A. Canann, Ted D.

Blacker, “Plastering: A New Approach to Automated,

3D Hexahedral Mesh Generation; Progress Report I”,

Sandia National Laboratories, SAND89-2192, February

1992.

[19] Naveen Rastogi, Fatma Kocer and Rodolfo Palma, “A

Computer Aided Optimization Tool to Design

Electromagnetic Retarders”, SAE Technical Paper 2004-

01-0382, http://whitepapers/2004_01_0382.pdf.

[20] H. Johansen and P. Colella, “A Cartesian grid embedded

boundary method for Poisson's equation on irregular

domains”, J. Comput. Phys. 147, 60 (1998).

